
J Comput Virol (2011) 7:247–258
DOI 10.1007/s11416-011-0152-x

ORIGINAL PAPER

Graph-based malware detection using dynamic analysis

Blake Anderson · Daniel Quist · Joshua Neil ·
Curtis Storlie · Terran Lane

Received: 7 March 2011 / Accepted: 20 May 2011 / Published online: 8 June 2011
© Springer-Verlag France 2011

Abstract We introduce a novel malware detection algorithm
based on the analysis of graphs constructed from dynam-
ically collected instruction traces of the target executable.
These graphs represent Markov chains, where the verti-
ces are the instructions and the transition probabilities are
estimated by the data contained in the trace. We use a
combination of graph kernels to create a similarity matrix
between the instruction trace graphs. The resulting graph
kernel measures similarity between graphs on both local
and global levels. Finally, the similarity matrix is sent to
a support vector machine to perform classification. Our
method is particularly appealing because we do not base our
classifications on the raw n-gram data, but rather use our
data representation to perform classification in graph space.
We demonstrate the performance of our algorithm on two
classification problems: benign software versus malware, and
the Netbull virus with different packers versus other clas-
ses of viruses. Our results show a statistically significant
improvement over signature-based and other machine learn-
ing-based detection methods.

B. Anderson (B) · D. Quist · J. Neil · C. Storlie
Los Alamos National Lab, Los Alamos, USA
e-mail: banderson@lanl.gov

D. Quist
e-mail: dquist@lanl.gov

J. Neil
e-mail: jneil@lanl.gov

C. Storlie
e-mail: storlie@lanl.gov

T. Lane
The University of New Mexico, Albuquerque, USA
e-mail: terran@cs.unm.edu

1 Introduction

Malware continues to be an ongoing threat to modern
computing. It was recently estimated that one in four com-
puters operating in the US are infected with malware [24].
In 2009, an estimated 55,000 malware samples were created,
more than had appeared in the entire history of the computer
virus up to that point [25]. With the ever increasing prolifera-
tion of these threats, it is important to develop new techniques
to detect and contain these malware.

Many of the current antivirus programs available rely on a
signature-based approach to classify programs as being either
malicious or benign. Signature-based approaches are popu-
lar due to their low false positive rate and low computational
complexity on the end host, both of which are appealing for
daily usage. Unfortunately, these schemes have been shown
to be easily defeated by simple code obfuscation techniques
[9]. With the ease of creating a new virus through these tech-
niques and polymorphic viruses becoming more prevalent,
non-signature based methods are becoming more attractive.

To combat these issues, several researchers began to look
at less strict measures to detect malicious code. These meth-
ods have generally revolved around n-gram analysis of the
static binary or dynamic trace of the malicious program
[11,27,28,36]. These methods have shown great promise in
detecting zero-day malware, but there are drawbacks related
to these approaches. The two parameters generally associated
with n-gram models are n, the length of the subsequences
being analyzed, and L , the number of n-grams to analyze.
For larger values of n and L , there is a much more expressive
feature space that should be able to discriminate between
malware and benign software more easily. But with these
larger values of n and L , we run into the curse of dimension-
ality: the feature space becomes too large and we do not have
enough data to sufficiently condition the model. With smaller

123

248 B. Anderson et al.

values of n and L , the feature space becomes too small and
discriminatory power is lost.

For our research, we use a modified version of the Ether
Malware Analysis framework [12] to perform the data col-
lection. Ether is a set of extensions on top of the Xen virtual
machine. Malware frequently uses self-protection measures
to thwart debugging and analysis. Ether uses a tactic of zero
modification to be able to track and analyze a running sys-
tem. Zero modifications preserve the sterility of the infected
system, and reduce the methods that malware authors can use
to detect if their malware is being analyzed. Increasing the
complexity of detection makes for a much more robust anal-
ysis system. We use these modifications to allow for deeper
introspection of the API and import internals [26].

Our data representation gets away from the need to spec-
ify the appropriate n and L . Instead we model the data as
a Markov chain represented by a weighted, directed graph.
The instructions of the program are represented as vertices,
and the weights of the edges are the transition probabilities
of the Markov chain, which are estimated using the program
trace we collect.

The novel contribution we present in this paper is to con-
struct a similarity, or kernel, matrix between the Markov
chain graphs and use this matrix to perform classification. We
use two distinct measures of similarity to construct our kernel
matrix: a local measure comparing corresponding edges in
each graph and a global measure which compares aspects of
the graphs’ topologies. This combination allows us to com-
pare the instruction trace graphs using very different criteria
in a unified framework. Once the kernel matrix is constructed,
we use support vector machines to perform the classification.

Our primary purpose is to show that our method out-
performs n-gram and signature-based methods on the mal-
ware versus benign classification problem. To examine this
problem, we use a dataset with 1,615 samples of malware and
615 samples of benign software. Our secondary purpose is to
show that our algorithm can correctly discriminate between
instances of the Netbull virus and other families of viruses.
For these results, we use 13 samples of the Netbull virus with
different packers and a random subsample consisting of 97
samples of unrelated malware. This result helps to validate
the use of our similarity measure in a malware phylogenetic
setting, as it shows the power of our method in classifying dif-
ferent examples of viruses. For malware phylogenetics/clus-
tering, the objective is to determine which previously known
malware samples are most similar to a newly detected piece
of malware. This information would help malware research-
ers to more quickly understand the virus and perform the
appropriate response [38].

Our paper is organized as follows: Sect. 2 examines our
data collection strategy. Section 3 illustrates how we get the
instruction trace data into our graph format, how we construct
the kernel matrices between these graphs, and finally, how

we classify the instruction traces. In Sect. 4 we demonstrate
our results, Sect. 5 discusses related work, Sect. 6 mentions
our ideas for future research directions, and we conclude in
Sect. 7.

2 Data collection

Our data collection technique uses the Ether analysis frame-
work to extract data from a Windows XP system. We chose
the Ether system as it guarantees some level of protection
against hardware based virtual machine detection. The pri-
mary mechanisms of protection that need to be overcome are
debugger and virtual machine detection, timing attacks, and
host system modifications. Each of these violate the funda-
mental tenet that the analyzed system must not be altered in
any manner.

There are three specific detection techniques that justify
the use of the Ether analysis framework. The first is based
on the presence of a debugger. This is usually executed by
the attacker reading the debugging flag from the process exe-
cution block of the running program. The Windows API Is-
DebuggerPresent flag indicates whether or not a debugger
is watching the execution. This simple technique is enough
to detect many of the common instrumentation systems in
use today [23]. The second detection is the Red Pill class of
instructions. Red Pill is a system developed by Rutkowska
that detects the presence of a dynamically translated virtual
machine such as VMWare or Virtual PC. In each of these
virtual machines, the SIDT, store interrupt descriptor table,
instruction will have a value that differs from a virtualized
system and real hardware. Timing attacks, implemented with
the RDTSC (read time step counter instruction) provide the
third protection to be avoided. These attacks measure the
time before and after a series of instructions. The difference
between these times gives the attacker a very useful tool for
determining if any monitoring is taking place (Fig. 1).

Any other modifications made to the analysis system must
not be easily discoverable. Specifically, the primary method
to be avoided is the “sterility” of the infected system. If there
is any difference between a typical analysis system and a

Fig. 1 The architectural layout of the Ether integration

123

Graph-based malware detection using dynamic analysis 249

normal Windows system, this can be detected by the malware
author.

The Ether system implements an instruction tracing mech-
anism that allows us to track the runtime execution of
any process on the instrumented system. To find a pro-
cess of interest, Ether parses and keeps track of the internal
Windows kernel process list. When the process to be traced
is scheduled by the Windows operating system, Ether makes
note of the contents of the CR3 register, a unique identifi-
cation that corresponds to the current process’s page direc-
tory entry. From here, Ether uses two main methods to track
individual instruction executions. First, the trap flag is set in
the EFLAG register. This will cause a single-step trap to be
raised to the operating system. Ether intercepts this trap at
the hypervisor level, clears the EFLAG single-step bit, then
marks the memory page for the code region invalid. Mark-
ing the memory page as invalid causes another trap to be
generated, which is also intercepted. The EFLAG register is
then reset, and the page error is cleared. This creates a back-
and-forth operation that allows for single-stepping. To avoid
detection by the monitored process, instructions that access
the EFLAGS register are intercepted.

The end result of instruction tracing is a list of the
in-order executed instructions. This instruction list is just a
simple list of addresses, and the corresponding instruction.
These instructions provide the input to our algorithms. These
instruction monitoring systems have been shown to be suc-
cessful in a wide range of operations [26].

To analyze the data, we begin by copying the executable
to the Ether analysis system. Then an instantiation of a Win-
dows virtual machine is started, and upon successful boot,
the file is copied. At this time, the Ether portion of Xen is
invoked and the malware is started. The sample is allowed to
run for five minutes, which has been shown to be a sufficient
time for execution [26].

3 Classification method

In this section we describe how we use the dynamic trace data
to perform classification. Our method has two novel compo-
nents: transforming the trace data into a Markov chain repre-
sentation and using the graph kernel machinery to construct
a similarity matrix between instances.

3.1 Data representation

Given an instruction trace P , we are interested in finding a
new representation, P ′, such that we can make unified com-
parisons in graph space while still capturing the sequential
nature of the data. We achieved this by transforming the
dynamic trace data into a Markov chain which we repre-
sent as a weighted, directed graph. A graph, G = 〈V, E〉,

Fig. 2 The left table shows an example of the trace data we collect.
A hypothetical resulting graph representing a fragment of the Markov
chain is shown on the right. In a real Markov chain graph, all of the
out-going edges would sum to 1

is composed of two sets, V and E . The elements of V are
called vertices and the elements of E are called edges. In our
representation, the edge weight, ei j , between vertices i and j
corresponds to the transition probability from state i to state
j in a Markov chain, hence, we require the edge weights for
edges originating at vi to sum to 1,

∑
i! j ei j = 1. We use

an n × n (n = |V |) adjacency matrix to represent the graph,
where each entry in the matrix, ai j = ei j .

We found 160 unique instructions across all of the traces
we collected. These instructions are the vertices of the
Markov chains. The 160 instructions are irrespective of the
operands used with those instructions. By ignoring oper-
ands, we remove sensitivity to register allocation and other
compiler artifacts. It is important to note that rarely did the
instruction traces make use of all 160 unique instructions,
and therefore, the adjacency matrices of the instruction trace
graphs contain some rows of zeros. The decision to incorpo-
rate unused instructions in the model allowed us to maintain
a consistent vertex set between all instruction trace graphs,
granting us the ability to make uniform comparisons in graph
space.

To find the edges of the graph, we first scan the instruction
trace, keeping counts for each pair of successive instructions.
After filling in the adjacency matrix with these values, we
normalize the matrix such that all of the non-zero rows sum
to one. This process of estimating the transition probabilities
ensures us a well-formed Markov chain. Figure 2 shows a
snippet of trace data with a resulting fragment of a hypothet-
ical instruction trace graph. Our Markov chain graph can be
summarized as G = 〈V, E〉, where

– V is the vertex set composed of the 160 unique instruc-
tions,

– E is the edge set where the transition probabilities are
estimated from the data.

The graphs we construct approximate the pathways of exe-
cution of the program, and by using graph kernels (Sect. 3.2),

123

250 B. Anderson et al.

we are able to exploit the local and global structure of these
pathways. Also, unlike n-gram methods where we must
choose the top-Ln-grams to use, doing our comparisons in
graph space allows us to make implicit use of all the infor-
mation contained in the instruction trace.

We experimented with another method for creating the
instruction trace graphs, using a more expressive vertex
set. In this method, we did not discard the arguments to
the instructions but rather constructed vertices in the form
〈operator, operand, operand〉 where the operator is the
instruction, and the operands are either null, or one of three
types: register, memory, or dereference. This resulted in
graphs with vertex sets of roughly 3,000 instructions. We did
not use this representation due to poor initial performance
with respect to accuracy and speed. We suspect this perfor-
mance is a result of there not being enough trace data to
accurately estimate the transition probabilities.

3.2 Constructing the similarity matrix

To make meaningful comparisons between the instruction
trace graphs, we employed the techniques of graph kernels
[18]. A kernel, K (x, x′), is a generalized inner product and
can be thought of as a measure of similarity between two
objects [31]. The power of kernels lies in their ability to
compute the inner product between two objects in a possibly
much higher dimensional feature space, without explicitly
constructing the feature space. A kernel, K : X × X → R,
is defined as:

K (x, x′) = 〈φ(x), φ(x′)〉 (1)

where 〈·, ·〉 is the dot product and φ(·) is the projection of the
input object into feature space. A well-defined kernel must
satisfy two properties: it must be symmetric (for all x and y ∈
X : K (x, y) = K (y, x)) and positive-semidefinite (for any
x1, . . . , xn ∈ X and c ∈ Rn :

∑n
i=1

∑n
j=1 ci c j K (xi , x j) ≥

0). Kernels are appealing in a classification setting due to
the kernel trick [31], which replaces inner products with ker-
nel evaluations. The kernel trick uses the kernel function to
perform a non-linear projection of the data into a higher
dimensional space, where linear classification in this higher
dimensional space is equivalent to non-linear classification
in the original input space.

Our approach makes use of two types of kernels: a
Gaussian kernel and a spectral kernel. The notions of simi-
larity that these two kernels measure are quite distinct, and
we found them to complement each other very well. The
Gaussian kernel we use is:

KG(x, x′) = σ 2e− 1
2λ2

∑
i, j (xi j −x′

i j)
2

(2)

where x and x′ are the weighted adjacency matrices of the
Markov chains, σ and λ are the hyperparameters of the kernel

function (estimated through cross-validation), and
∑

i, j sums
the squared distance between corresponding edges in the
weighted adjacency matrices. This kernel searches for local
similarities between the adjacency matrices. The motivation
behind this kernel is that two different classes of programs
should have different pathways of execution, which would
result in a low similarity score.

The other kernel we use is based on spectral techniques
[10]. These methods use the eigenvectors of the graph
Laplacian to infer global properties about the graph. The
weighted graph Laplacian is a |V | × |V | matrix defined as:

L =






1 − evv
dv

if u = v, and dv)= 0,

− euv√
dudv

if u and v are adjacent,

0 otherwise.
(3)

where euv is the weight between vertices u and v, and dv is the
degree of v. We take the eigenvectors associated with non-
zero eigenvalues of L, φ(L), as our new set of features. These
eigenvectors encode global information about the graph’s
smoothness, diameter, number of components and station-
ary distribution among other things. With this information,
we construct our second kernel by using a Gaussian kernel
on the eigenvectors:

KS(x, x′) = σ 2e− 1
2λ2

∑
k (φk (L(x))−φk(L(x′)))2

(4)

where φk(L(x)) and φk(L(x′)) are the eigenvectors associ-
ated with weighted Laplacian of the adjacency matrices, L(x)

and L(x′).
To give some intuition behind the spectral kernel, Figure 3

plots the eigenvectors of the graph Laplacian for an example
of benign software and an example of malware. The diagonal
ridge in the figure represents all of the unused instructions in
the trace, which are disconnected components in the graph.
To construct KS we only use the top-k eigenvectors and this
ridge information is discarded. The decision to use only the
top-k eigenvectors is defended in Sect. 4.3. The interesting
information of the graph, the actual program flow contained
in the largest connected component, is found in the spikes
and valleys at the bottom of Fig. 3a, b. The eigenvectors of
the Laplacian can be thought of as a Fourier basis for the
graph [10]. Comparing these harmonic oscillations, encoded
by the eigenvectors, between different types of software pro-
vides discrimination between structural features of the graph
such as strongly connected components and cycles.

If we have two valid kernels, K1 and K2, we are assured
that K = K1 + K2 is also a valid kernel [4]. This algebra on
kernels allows us to elegantly combine kernels that measure
very different aspects of the input data, and is the object of
study in multiple kernel learning [2,35]. Our final kernel is a
weighted combination of KG and KS :

KC = µKG + (1 − µ)KS (5)

123

Graph-based malware detection using dynamic analysis 251

(a) (b)

Fig. 3 The eigenstructure of the Markov chain graph from two program traces. In a we have an example of benign software and in b we have an
example of malware

where 0 ≤ µ ≤ 1. µ is found using a cross-validation search
where we restrict candidate µ’s to be in the range [0.05, 0.95]
with a step size of 0.05. Although more advanced techniques
to search for the parameters of multiple kernel learning exist
[35], we found this simple approach to be sufficient for the
combination of these two kernels.

3.3 Classifying malware

We use support vector machines to perform the classification
due to their intimate relationship with the kernels we con-
struct. Support vector machines search for a hyperplane in the
feature space that separates the points of the two classes with
a maximal margin [6]. The hyperplane that is found by the
SVM is a linear combination of our data instances, xi , with
weights, αi . It is important to note that only points close to the
hyperplane will have non-zero α’s. These points are called
support vectors. Therefore, the goal in learning SVMs is to
find the weight vector, α, describing each data instance’s con-
tribution to the hyperplane. Using quadratic programming,
we have the following optimization problem:

max
α




n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiα j yi y j 〈xi , x j 〉



 (6)

subject to the constraints:

n∑

i=1

αi yi = 0 (7)

0 ≤ αi ≤ C (8)

In Eq. 6, yi is the class label of instance xi , and 〈·, ·〉 is the
Euclidean dot product. Equation 7 constrains the hyperplane
to go through the origin. Equation 8 constrains the α’s to be
non-negative and less than some constant C . C allows for
soft-margins, meaning that some of the examples may fall
between the margins. This helps to prevent over-fitting the
training data and allows for better generalization accuracy.
The weight vector for the hyperplane is then defined to be:

w =
∑

i

αi yi xi (9)

With this current setup, we are only afforded linear
hyperplanes in the d-dimensional space defined by the fea-
ture vectors of x. By using the kernel trick, we can project
the data instances into a higher dimensional space and find a
linear hyperplane in that space, which would be equivalent to
a non-linear hyperplane in the original d-dimensional space.
Our new optimization problem is:

max
α




n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiα j yi y j k(xi , x j)



 (10)

Equations 6 and 10 are identical with the exception that we
have replaced the dot product, 〈·, ·〉, with the kernel function
k(·, ·).

Given α found in Eq. 10, we have the following decision
function:

f (x) = sgn

(
n∑

i

αi yi k(x, xi)

)

(11)

123

252 B. Anderson et al.

which returns class +1 if the summation is ≥ 0, and class −1
if the summation is < 0. The number of kernel computations
in Eq. 11 is decreased because many of the α’s are zero.

We implemented the computation of the kernel matrices
ourselves and use the openly available PyML library [3] to
perform the support vector machine training and classifi-
cation. Reusing an openly available SVM implementation
improves the reproducability of our results. The free param-
eter C in Eq. 8 was estimated through cross-validation with
the candidate values being [0.1, 1.0, 10.0, 100.0, 1,000.0].

3.4 Limitations

The computational complexity of this current method would
be limiting in a real-time setting. It is important to note that
the main kernel computation and the support vector machine
optimization to find α could all be done offline and supplied
to users. The kernel computations in Eq. 11 are O(n2) for
the Gaussian kernel and O(n3) for the spectral kernel and
would have to be done online. Although the sparsity of α

helps to restrict the number of kernel computations required,
this could still become expensive to the user. In Sect. 4.6 we
present runtime results for our method and Sect. 6 discusses
ways to speed up these operations.

4 Results

4.1 Data/environment

To perform our experiments, we used a machine with quad
Xeon X5570s running at 2.93 GHz with 24 GB of mem-
ory. The dataset we used is composed of two distinct groups
which we use to answer two main questions:

1. Can we correctly classify malicious software and benign
software with a low false positive rate?

2. Can we differentiate the Netbull virus from other exam-
ples of malware?

To answer the first question, we collected 1,615 instances of
malware and 615 instances of benign software, as described
in Sect. 2. To answer the second question, we used 13
instances of the Netbull virus with different packers, such
as UPX [13] and ASprotect [1], and compared these exam-
ples against a random subsample of 97 instances of mal-
ware. Using 13 different, commonly used packers provides
extremely polymorphic versions of the same Netbull virus.

4.2 Other methods

To determine the validity of our method, we compared it
against a standard n-gram model [19] and 9 leading antivirus

software programs that use signature-based methods. For the
standard n-gram model, we chose the top-Ln-grams to use
by computing the information gain as suggested in [19]:

I G(j) =
∑

v j ∈{0,1}

∑

yi ∈Y

P(v j , yi) log
P(v j , yi)

P(v j)P(yi)
(12)

where v j tells us whether the j th n-gram exists or not,
P(v j , yi) is the percentage of data instances of class yi with
value v j , P(v j) is the percentage of instances with value
v j , and P(yi) is the percentage of instances with class label
yi . Once we have sorted the list of n-grams based on their
information gain, Eq. 12, we then select the top-L to train
the classification algorithm. It is important to note that we
used n-grams derived from the same dynamic traces that our
Markov chain representations were based on and not on static
information contained in the binary.

To find the best choices for the parameters n and L for the
standard n-gram model, we varied n from 2 to 6 and L from
500 to 3,000 in increments of 500. For each choice of param-
eters, we ran both a support vector machine, with a linear ker-
nel, Gaussian kernel, and d-order polynomial (2 ≤ d ≤ 9)
kernel, and a k-nearest neighbor classifier (1 ≤ k ≤ 9),
with the feature vector consisting of the top-Ln-grams. We
present the top-5 performing parameter combinations for the
n-gram model and the top-5 performing antivirus programs
in our results.

4.3 Selecting the k eigenvectors

To find the appropriate k, the number of eigenvectors we use
to classify the program traces in Eq. 4, we performed a series
of tests on an independent dataset of 50 malware program
traces and 10 benign traces where we adjusted k using values
ranging from 1 to 30. To ease computation, we would like to
choose the smallest possible k which still maintains discrim-
inatory power. Using a multiple kernel learning framework
allows us some freedom in choosing this parameter as the
kernels work together to smooth each other. However, we
did find that a near-optimal k still has a statistically signifi-
cant impact on the classification results.

Figure 4 shows the results of choosing k averaged over 10
runs with the error bars showing one standard deviation. The
decreasing performance as we increase k is expected because
as we choose more eigenvectors the feature space begins to
overfit the training data, which results in lower accuracy on
the test set. Using these results as a prior, we decided to set
k = 9 for the other experiments we ran. Alternatively, k could
be selected using cross-validation on a validation dataset for
each experiment.

123

Graph-based malware detection using dynamic analysis 253

Fig. 4 Classification accuracy of 50 instances of malware versus 10
instances of benign software as we vary the number of eigenvectors, k,
of the spectral kernel. Results are averaged over 10 runs with the error
bars being one standard deviation

4.4 Benign versus malware

We now explore the validity of our multiple kernel learn-
ing method as an alternative to n-gram and signature-based
virus detection methods. Table 1 presents the results of our
three different kernels and the n-gram methods using 10-fold
cross-validation. The top-5 performing antivirus programs
are also presented. For the n-gram methods, we used the same
parameters as discussed in the previous section. The best
results for the n-grams were achieved when n =4, L = 1,000
and a support vector machine with a second order polynomial
kernel was used. It is interesting to note that three antivirus
programs, as well as our kernel methods, labeled the same
benign executable as being malicious. This could be a result
of a noisy dataset or a bad signature.

It is important to note that both machine learning
approaches, graph kernels and n-grams, were able to eas-
ily out-perform the standard antivirus programs. Although
n-grams were able to out-perform the antivirus programs,
our results reinforce our hypothesis that learning with the
Markov chain graphs improves accuracy over n-gram meth-
ods. Table 1 also illustrates that a combined kernel, which
uses local and global structural information about the Mar-
kov chain graph, improves performance over the standalone
kernels.

Figure 5 shows the heat maps (the values for the similarity
matrix) for the 3 kernels we tested against. For visual pur-
poses, we only show kernel values for 19 benign samples and
97 malware samples. The program traces that are more sim-
ilar will have warmer colors. The block structure we see in
this figure indicates that these kernels are able to discriminate
between the two classes of software.

With our current dataset, we have more examples of mal-
ware than we do benign software. This is a by-product of
the availability of the benign trace data. This data skew can
in part be responsible for a portion of the false-positives we
found in both our method and the n-gram methods. In a pro-
duction setting, we would need a more diverse and extensive
set of benign trace data in order to alleviate this problem.

4.5 Netbull versus malware

Our second set of experiments evaluates the performance of
these algorithms with respect to their ability to differentiate
between different types of malware. This is an important
direction to pursue if we want to transfer this methodology
to a clustering/phylogenetics setting. Our dataset was com-
posed of 13 instances of the Netbull virus with different pack-
ers and a random subsample of 97 instances of malicious
code from our main malware dataset. We limited the number

Table 1 The classification
accuracy of 615 instances of
benign software versus 1,615
instances of malware

Statistically significant winners
are bolded. The top 5 parameter
choices for the n-gram model
are presented as well as the top-5
performing signature-based
antivirus programs

Method Accuracy (%) FPs FNs AUC

Gaussian kernel 95.70 44 52 0.9845

Spectral kernel 90.99 80 121 0.9524

Combined kernel 96.41 47 33 0.9874

n-gram (n = 3, L = 2,500, SVM = 3-poly) 82.15 300 98 0.9212

n-gram (n = 4, L = 2,000, SVM = 3-poly) 81.17 327 93 0.9018

n-gram (n = 2, L = 1,000, 4-NN) 80.63 325 107 0.8922

n-gram (n = 2, L = 1,500, SVM = 2-poly) 79.82 339 111 0.8889

n-gram (n = 4, L = 1,500, SVM = Gauss) 79.42 354 105 0.8991

AV0 73.32 0 595 N/A

AV1 53.86 1 1,028 N/A

AV2 49.60 0 1,196 N/A

AV3 43.27 1 1,264 N/A

AV4 42.96 1 1,271 N/A

123

254 B. Anderson et al.

(a) (b) (c)

Fig. 5 The heat maps of the kernel (similarity) matrix for benign software versus malware. The smaller block in the upper left of each figure is
the benign software and the larger lower right is the malware. a Gaussian kernel, b Spectral kernel, c Combined kernel

Table 2 The classification
accuracy of 13 instances of the
Netbull virus with different
packers versus 97 instances of
malware

Statistically significant winners
are bolded

Method Accuracy (%) FPs FNs AUC

Gaussian kernel 99.09 1 0 0.9965

Spectral kernel 96.36 4 0 0.9344

Combined kernel 100.00 0 0 1.00

n-gram (n = 4, L = 1,000, SVM = 2-poly) 94.55 5 1 0.8776

n-gram (n = 4, L = 2,500, SVM = Gauss) 93.64 6 1 0.8215

n-gram (n = 6, L = 2,500, SVM = 2-poly) 92.73 6 2 0.8432

n-gram (n = 3, L = 1,000, SVM = 2-poly) 89.09 12 0 0.6173

n-gram (n = 2, L = 500, 3-NN) 88.18 12 1 0.6334

of other families of viruses to 97 due to the effects of data
skew. The results are summarized in Table 2.

These results are very promising as our method using
the combined kernel can correctly classify all instances of the
Netbull virus despite this being a very skewed dataset. The
n-gram methods had a more difficult time correctly classify-
ing the instances of the Netbull virus given this extreme data
skew. It is important to note that after the top-3 parameter
choices for the n-grams, these models quickly devolved into
predicting the majority class for all instances. This a common
problem given data skew [7].

Our kernels for this dataset are displayed in Fig. 6 and
have a similar block structure to Fig. 5. This is important
as it validates our approach’s ability to distinguish between
somewhat similar pieces of malware. These results also val-
idate using our data representation and associated kernels in
a kernel-based clustering environment [22].

4.6 Timing results

In this section we explore the computation time for our
method. As stated previously, there are two main components
to our approach; computing the graph kernels and performing

the support vector machine optimization (Eqs. 5 and 10),
which can be done offline, and the classification of a new
instance (Eq. 11), which is done online. We used the dataset
composed of 1,615 samples of malicious programs and 615
samples of benign programs.

As Table 3 illustrates, the majority of our method’s time
is spent computing the kernel matrices. It took 698.45 s to
compute the full kernel matrices. This may seem problem-
atic, but since this portion can be done offline once, it will
not slow down a production system. The online component
of classifying a new instance took 0.54 s as shown in Table 3.
The majority of this time is spent in computing the kernel val-
ues between the new instance and the labeled training data
as described in Eq. 11.

The number of kernel computations is decreased due
to the support vector machine finding a sparse set of
support vectors. The PyML implementation of the SVM
we used typically found ∼350 support vectors. There are
other forms of support vector machines [16] that search
for sparser solutions, which would help to speed up this
online component by reducing the number of support
vectors thereby reducing the number of kernel computa-
tions.

123

Graph-based malware detection using dynamic analysis 255

(a) (b) (c)

Fig. 6 The heat maps of the kernel matrix for the Netbull virus with different packers versus malware. a Gaussian kernel, b Spectral kernel,
c Combined kernel

Table 3 Timing results for the computation time for each step of our
method. All results are in seconds with one standard deviation given

Component Time

Gaussian kernel 147.91 ± 9.54

Spectral kernel 550.55 ± 32.90

SVM optimization 0.16 ± 0.05

Classifying new instance 0.54 ± 0.07

Total offline 698.45 ± 57.44

Total online 0.54 ± 0.07

5 Related work

The n-gram methodology was one of the first malware detec-
tion techniques rooted in machine learning and has had great
success at detecting obfuscated and polymorphic viruses
[11,19,27,28]. Our method is related to n-grams in the sense
that we use 2-grams to condition our transition probabilities
for the Markov chain. The important distinction that our work
makes is to treat this data in a novel way by using a graph
multiple kernel learning framework.

The data transformation that we use, program trace to
Markov chain, is similar to the Markov n-gram approach
[32]. Here, they perform their analysis on static files such as
MP3s, executable files, and compressed ZIP files and try to
find an appropriate distribution of entropy for non-infected
files. They set up a first order Markov chain between the bytes
in their file, and compute the entropy using:

R =
n∑

i=0

πi H(xi) (13)

where H(xi) is the entropy of row i in the transition
probability matrix. They then generate a histogram from
this information and normalize it to obtain a distribution,
which approaches the Gaussian distribution as the number

of sampled entropies increases. They then use a threshold
of 5 standard deviations from the mean to classify files as
containing malware. In our work, we are not concerned with
finding embedded malware but rather in classifying dynamic
program traces. They also use the Markov chain in an infor-
mation-theoretic setting whereas we use the graph structure
present in the Markov chain to classify new traces.

Another line of research uses control flow graphs to cate-
gorize the behavior of the program [5,8,15,20]. The control
flow graph is a representation that extracts all paths of exe-
cution that may be executed during a program’s lifetime. In
this approach, there is usually a code normalization piece that
attempts to identify and remove unreachable code, simplify
algebraic expressions, and get rid of intermediate variables
[5]. With this preprocessing done, the control flow graph
is constructed with the vertices being the basic blocks of
the executable, and each edge is a possible flow of con-
trol between two vertices. The basic blocks are generally
constructed using heuristics on the static disassembled exe-
cutable based on jump, call, and return instructions. Classifi-
cation based on control flow graphs generally uses sub-graph
matching [5,20] or edit-distance between graphs [8].

Our method differs from these control flow graph methods
in several respects. We use data derived from the dynamic
execution of a program as opposed to analysis on the dis-
assembled binary. We do not group this information into
basic blocks, but instead use the Markov chain representation
of individual instructions to arrive at a compact representa-
tion that grants us a finer level of resolution. To perform
the classification, we use kernel methods that look at the
global and local similarity between graphs, whereas the con-
trol flow graph methods use either sub-graph isomorphism,
which there are no known general polynomial time algo-
rithms and therefore must rely on heuristics, or edit-distance,
which ignores the global structure of the graphs.

The closest work to ours analyzes the system calls per-
formed by a program [37]. They use two representations in

123

256 B. Anderson et al.

their analysis. The first is a tree structure where the vertices
are either processes or system calls, and the edges are created
when a process creates another process or makes a system
call. The second is a tree structure where the vertices are
processes and each vertex contains information about the
probability distribution for the executed system calls. Edges
are created when one process creates another. In contrast,
we perform our analysis on the Markov chain representation
of the instruction trace of a program, which has the same
advantages compared to the control flow graphs: finer level
of resolution and more expressive power. The kernel they use
on the first data representation counts the number of common
sub-trees contained in each tree. The kernel used on the sec-
ond data representation works by enumerating random walks
of differing lengths, and then comparing them with

K
(
x, x′) = Kv

(
v1, v

′
1
) l∏

i=2

Ke
(
ei−1:i , e′

i−1:i
)

Kv

(
vi , v

′
i
)

(14)

where Kv(vi , v
′
i) is the Gaussian kernel between the sys-

tem call probability distributions at those two vertices, and
Ke(ei−1:i , e′

i−1:i) is assumed to be 1. The kernels we use do
not have to enumerate the random paths of some length, l,
as they infer the global structure of the graph using spectral
graph techniques.

6 Future work

There are some significant limitations of the Ether system.
First, Ether is not completely invisible. Recent variants of
the RDG Tejon packer have been able to detect Ether [34].
Specifically, the BIOS data string for Ether uses an emu-
lated variant from the Bochs virtual machine [21], and can
be detected. Second, the Ethernet card that is emulated by
the underlying Xen system can be easily analyzed. Each of
these string settings can be changed to make sure that they are
not detected. The third and final problem with Ether is that
it is a slow system for analysis. Each instruction generates
an interrupt in the form of a page fault or a debug exception.
Generating these interrupts causes significant performance
problems that are inherent in this analysis. Therefore, Ether
is unsuitable as a system to be implemented in production or
consumer Windows implementations.

Although the results we present show great promise in
using the graph structure of the instruction traces to classify
malware, our current method’s computational complexity
would be prohibitive in a real-time setting. The classifica-
tion method is made up of two main components: an offline
component that constructs the kernel matrix and finds the
support vectors of the system, and an online component that
classifies new program traces as being either malicious or

benign. It is important to note that the runtime of the offline
element is of less importance as this will not impact the user.

The worst-case computational complexity for solving the
optimization problem, Eq. 10, is O(n3) where n is the num-
ber of support vectors [6]. Although this is done offline, there
are several alternative SVM approaches, such as the reduced
support vector machine [16], that would help to increase the
speed of computing the weights of the support vectors.

The computationally intensive piece of the online com-
ponent is evaluating the kernel in Eq. 11. Currently, we
are naïvely computing the eigenvectors for Eq. 4 using
a singular value decomposition. This operation is O(n3)

and is unnecessary as it computes all of the eigenvec-
tors and we only use the top-k. Instead, we could use
Hotelling’s power method to find the top-k eigenvectors
[14], where k - n. This method runs in O(kn2) and
would help to increase the speed of both the offline com-
plete kernel computation, and the online computations of
Eq. 11.

The multiple kernel learning framework gives us a log-
ical way to measure different aspects of the program trace
data that we have collected. An interesting direction would
be to incorporate different data sources, each with appropri-
ate kernels, into our composite kernel. These data sources
could include information based on the static analysis of the
binary and the API sequence calls made by the program.
Methods based on these data sources have been shown to be
successful [30,33,39], and could possibly lead to more accu-
rate results when combined in our multiple kernel learning
framework.

In our current setup, we were able to naïvely learn µ

in Eq. 5 through cross-validation. If we decide to add dif-
ferent types of kernels or use multiple data sources, this
naïve approach will no longer be suitable. Instead, we can
embed the multiple kernel learning within the support vector
machine’s optimization problem, now a semi-infinite linear
program, which allows us to simultaneously find the support
vectors and the new parameter β [35]. β is the parameter that
controls the contribution of each kernel with the constraint∑k

i=0 βi = 1.
Recently, there has been a rising interest in learning

how to cluster malware so that researchers can gain insight
into the phylogenetic structure of current viruses [17,29].
Because the majority of new viruses are derived from,
or are composites of, established viruses, this informa-
tion would allow for more immediate responses and allow
researchers to understand the new virus much more quickly.
Given our kernel matrix, which we have shown can cor-
rectly classify the Netbull viruses against other types of
viruses, we can use spectral clustering [22]. With spectral
clustering, we aim to use the eigenstructure of the kernel
matrix to cluster the different data instances into different
families.

123

Graph-based malware detection using dynamic analysis 257

7 Conclusion

With the advent of polymorphic code and obfuscated viruses,
signature-based malware detection is becoming quickly
outdated [9]. To combat this, many researchers have began
drawing ideas from machine learning to create more flexible
detection algorithms. Many of these approaches have cen-
tered around using n-gram based statistics to classify new
instances as being either benign or malware.

Our novel method extends the n-gram methodology by
using 2-grams to condition the transition probabilities of
a Markov chain, and then treats that Markov chain as a
graph. Taking the Markov chain as a graph allows us to uti-
lize the machinery of graph kernels to construct a similarity
matrix between instances in our training set. We use two dis-
tinct measures of similarity to construct our kernel matrix: a
Gaussian kernel, which measures local similarity between the
graphs’ edges, and a spectral kernel, which measures global
similarity between the graphs. Given our kernel matrix, we
can then train a support vector machine to perform classifi-
cation on new testing points.

Using the hardware hypervisor affords us a unique look
into the running program currently unavailable from more
traditional debugger based methods. The lowered detectabil-
ity, and the protections afforded to a Xen virtualized system,
make this a compelling method for our data collection.

We have demonstrated the performance of our multiple
kernel learning framework on three problems. The first prob-
lem investigated whether our method could properly discrim-
inate between instances of malware and benign software. We
showed that with our combined kernel we were able to out-
perform n-gram and signature-based methods, while main-
taining a low false positive rate.

The second problem tested our method in its ability to
discriminate between different types of malware. We com-
pared the Netbull virus with different packers to a set of other
instances of malware. The multiple kernel learning method
was able to perfectly classify these instances. This result
shows great promise for using these kernels in a cluster-
ing setting, which would allow researchers to more quickly
understand the dynamics of a new virus.

Acknowledgments Dr. Lane’s work was supported by the NSF under
grant IIS-0705681. This material was prepared by Los Alamos National
Security, LLC (LANS) under Contract DE-AC52-06NA25396 with the
U.S. Department of Energy (DOE).

References

1. Aspack software. http://www.aspack.com/asprotect.html, Acces-
sed 5 August 2010

2. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learn-
ing, conic duality, and the smo algorithm. In: Proceedings of
the Twenty-First International Conference on Machine Learning,
ICML’04, p. 6. ACM, New York (2004)

3. Ben-Hur, A.: Pyml: machine learning in python. http://pyml.
sourceforge.net/, Accessed 28 July 2010

4. Bishop, C.M.: Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer, New York (2006)

5. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutat-
ing malware using control-flow graph matching. In: Bschkes, R.,
Laskov, P. (eds.) Detection of Intrusions and Malware and Vulner-
ability Assessment. Lecture Notes in Computer Science, vol. 4064,
pp. 129–143. Springer, Berlin (2006)

6. Burges, C.J.C.: A tutorial on support vector machines for pattern
recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

7. Cardie, C., Nowe, N.: Improving minority class prediction
using case-specific feature weights. In: Proceedings of the Four-
teenth International Conference on Machine Learning, ICML’97,
pp. 57–65. Morgan Kaufmann Publishers Inc, San Francisco (1997)

8. Cesare, S., Xiang, Y.: Classification of malware using struc-
tured control flow. In: Proceedings of the Eighth Australasian
Symposium on Parallel and Distributed Computing, vol. 107, Aus-
PDC ’10, pp. 61–70. Australian Computer Society Inc, Darling-
hurst (2010)

9. Christodorescu, M., Jha, S.: Static analysis of executables to detect
malicious patterns. In: In Proceedings of the 12th USENIX Secu-
rity Symposium, pp. 169–186 (2003)

10. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Con-
ference Series in Mathematics, No. 92). American Mathematical
Society, Providence (1997)

11. Dai, J., Guha, R., Lee, J.: Efficient virus detection using dynamic
instruction sequences. J. Comput. 4(5), 405–414 (2009)

12. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware anal-
ysis via hardware virtualization extensions. In: Proceedings of the
15th ACM conference on Computer and communications security,
CCS ’08, pp. 51–62. ACM, New York (2008)

13. UPX: The Ultimate Packer for eXecutables. http://upx.sourcefor
ge.net/, Accessed 16 August 2010

14. Hotelling, H.: Analysis of a complex of statistical variables into
principal components. J. Educ. Psychol. 24(6), 417–441 (1933)

15. Hu, X., Chiueh, T.-c., Shin, K.G.: Large-scale malware index-
ing using function-call graphs. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS’09,
pp. 611–620. ACM, New York (2009)

16. Lee, Y.J., Mangasarian, O.L.: Rsvm: reduced support vector
machines. In: Data Mining Institute, Computer Sciences Depart-
ment, University of Wisconsin, pp. 00–07 (2001)

17. Karim, Md, Walenstein, A., Lakhotia, A., Parida, L.: Malware
phylogeny generation using permutations of code. J. Comput.
Virol. 1, 13–23 (2005)

18. Kashima, H., Tsuda, K., Inokuchi, A.: Kernels for Graphs. MIT
Press, Massachusetts (2004)

19. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious execu-
tables in the wild. In: KDD ’04: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and
data mining, pp. 470–478. ACM, New York (2004)

20. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.:
Polymorphic worm detection using structural information of
executables. In: Valdes, A., Zamboni, D. (eds.) Recent Advances in
Intrusion Detection. Lecture Notes in Computer Science, vol. 3858,
pp. 207–226. Springer, Berlin (2006)

21. Lawton, K., Denney, B., Guarneri, N.D., Ruppert, V., Bothamy, C.:
Bochs user manual. Online user manual, November 2010

22. Luxburg, U.: A tutorial on spectral clustering. Stat. Com-
put. 17(4), 395–416 (2007)

23. Microsoft, Inc. IsDebuggerPresent function. http://msdn.micro
soft.com/en-us/library/ms680345(VS.85).aspx, October 2010

24. Organisation for Economic Co-operation and Development. Mali-
cious software (malware): A security threat to the internet economy.
White Paper, June 2008

123

http://www.aspack.com/asprotect.html
http://pyml.sourceforge.net/
http://pyml.sourceforge.net/
http://upx.sourceforge.net/
http://upx.sourceforge.net/
http://msdn.microsoft.com/en-us/library/ms680345(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms680345(VS.85).aspx

258 B. Anderson et al.

25. Panda Security. Panda labs annual report 2009. White Paper,
January 2010

26. Quist, D., Liebrock, L., Neil, J.: Improving antivirus accuracy with
hypervisor assisted analysis. J. Comput. Virol 1–11 (2010). doi:10.
1007/s11416-010-0142-4

27. Reddy, D., Dash, S., Pujari, A.: New malicious code detection using
variable length n-grams. In: Information Systems Security. Lec-
ture Notes in Computer Science, vol. 4332, pp. 276–288. Springer,
Berlin (2006)

28. Reddy, D., Pujari, A.: N-gram analysis for computer virus detec-
tion. J. Comput. Virol. 2, 231–239 (2006)

29. Rieck, K., Holz, T., Willems, C., Dssel, P., Laskov, P.: Learning and
classification of malware behavior. In: Zamboni, D. (ed) Detection
of Intrusions and Malware, and Vulnerability Assessment. Lec-
ture Notes in Computer Science, vol. 5137, pp. 108–125. Springer,
Berlin (2008)

30. Wang, K., Stolflo, S.J., Li, W.J.: Fileprint analysis for malware
detection. In: ACM CCS WORM (2005)

31. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press,
Massachusetts (2002)

32. Shafiq, M., Khayam, S., Farooq, M.: Embedded malware detection
using markov n-grams. In: Detection of Intrusions and Malware,

and Vulnerability Assessment. Lecture Notes in Computer Science,
vol. 5137, pp. 88–107. Springer, Berlin (2008)

33. Shankarapani, M., Ramamoorthy, S., Movva, R., Mukkamala, S.:
Malware detection using assembly and api call sequences. J. Com-
put. Virol. pp. 1–13 (2010). doi:10.1007/s11416-010-0141-5

34. RDGMax Software. RDG Tejon Crypter. Software package,
November 2010

35. Sonnenburg, S., Raetsch, G., Schaefer, C.: A general and efficient
multiple kernel learning algorithm (2006)

36. Stolfo, S., Wang, K., Li, W.J.: Towards stealthy malware detection.
In: Malware Detection. Advances in Information Security, vol. 27,
pp. 231–249. Springer, Berlin (2007)

37. Wagner, C., Wagener, G., State, R., Engel, T.: Malware analysis
with graph kernels and support vector machines. In: Malicious and
Unwanted Software (MALWARE), 2009 4th International Confer-
ence, pp. 63–68 (2009)

38. Walenstein, A., Venable, M., Hayes, M., Thompson, C., Lakhotia,
A.: Exploiting similarity between variants to defeat malware (2008)

39. Li, T., Ye, Y., Wang, D., Ye, D.: Imds: Intelligent malware detection
system. In: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2007)

123

http://dx.doi.org/10.1007/s11416-010-0142-4
http://dx.doi.org/10.1007/s11416-010-0142-4
http://dx.doi.org/10.1007/s11416-010-0141-5

	Graph-based malware detection using dynamic analysis
	Abstract
	1 Introduction
	2 Data collection
	3 Classification method
	3.1 Data representation
	3.2 Constructing the similarity matrix
	3.3 Classifying malware
	3.4 Limitations

	4 Results
	4.1 Data/environment
	4.2 Other methods
	4.3 Selecting the k eigenvectors
	4.4 Benign versus malware
	4.5 Netbull versus malware
	4.6 Timing results

	5 Related work
	6 Future work
	7 Conclusion
	Acknowledgments
	References

